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Insertion reactions of macrocyclic rhodium carbenoids:
a novel method for the synthesis of cryptands
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Abstract—Reaction of macrocyclic diazocarbonyl compounds and alcohols or diols in the presence of rhodium(II) acetate catalyst
led to functionalized macrocyclic di- or tetralactones via O–H insertion. Interestingly, the double O–H insertion reaction with dihy-
droxy compounds gave cryptands of various ring sizes.
� 2007 Elsevier Ltd. All rights reserved.
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The formation of inter- and intramolecular ether link-
ages from diazo ketones and alcohols in the presence
of rhodium(II) acetate is well studied.1 The decomposi-
tion of a-diazocarbonyl compounds, predominantly
with protic/aprotic and Lewis acids has also been well
studied2 and applied3 to the synthesis of important
natural products. Esterification of acids using diazo-
methane is very common, whereas the etherification
reaction of alcohols using diazocarbonyl compounds is
not widely used despite the fact that they often proceed
in good yields via an O–H insertion reaction. Molecular
recognition is a powerful technique that can be used to
generate noncovalently bound host–guest complexes
for a variety of purposes.4 Macrocycles form a major
class of molecules that encompass a wide range of struc-
tures and functional groups. They also perform a wide
range of functions in areas as diverse as ion transport,
gelation and catalysis. Chemists have been fascinated
for many years by the inherent physical properties of
macrocycles and by the synthetic challenge that these
structures represent.5 Contemporary chemistry, how-
ever, is increasingly directed towards the creation of
molecules that are tailored to perform a well-defined
function. The synthesis of macrocyclic diazocarbonyl
compounds and their reactions have not been reported6

so far. In continuation of our studies on diazocarbonyl
compounds7 and macrocycles,8 we herein report a novel
method for the synthesis of functionalized macrocyclic
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di- or tetralactones and cryptands via the O–H insertion
reactions of macrocyclic rhodium(II) carbenoids.

With the aim to develop new ether linked macrocyclic
tetralactones via O–H insertion reactions, we have syn-
thesized a series of macrocyclic diazocarbonyl com-
pounds6 (Scheme 1). The macrocyclic diazocarbonyl
compounds 1a–g were synthesized by the reaction of
malonylchloride with dihydroxy compounds to afford
macrocyclic lactones. Subsequent diazotransfer reaction
of the macrocyclic lactones afforded the corresponding
macrocyclic diazocarbonyl compounds (Fig. 1).

Initially, the O–H insertion9 reaction of macrocyclic di-
azocarbonyl compounds with alcohol was studied.
Thus, the reaction of 1b with DCM containing two
drops of water at reflux in the presence of 2 mol % of
rhodium acetate afforded O–H insertion product 2a in
O O R
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OO

Dimer 1d-h

Scheme 1. Synthesis of macrocyclic diazocarbonyl compounds.
Reagents: p-Acetamidobenzenesulfonyl azide, DBU, DCM.
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Figure 1. Synthesized macrocyclic diazocarbonyl compounds.
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Scheme 2. Insertion reactions of macrocyclic carbenoids with alcohols.
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Scheme 3. Double carbenoid insertion with dihydroxy compounds.

Table 2. Synthesis of bis-crown ethers 3

Entry Diazo
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90% yield (Scheme 2). Similarly, macrocyclic diazocar-
bonyl compound 1b was treated with ethanol, methanol,
benzyl alcohol and benzene-1,2-dimethanol to afford
the corresponding ether functionalized macrocyclic
dilactones 2b–e in good yields (Table 1).
Table 1. Synthesis of macrocyclic lactones 2

Entry Diazo
ketone

Macrocyclic lactone 2 Yield (%)
of 2a

1 1b
O
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O 2e
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a Yields are unoptimized and refer to isolated yields.
Encouraged by this result, we envisaged the formation
of two C–O bonds via double O–H insertion.10 Thus,
excess diazocarbonyl compound 1b was refluxed with
Rh2(OAc)4 in aqueous DCM to afford ether linked
macrocycle 3a in moderate yield (Scheme 3). Similar
reactions of 1b with ethylene glycol or 1,8-octanediol
afforded the corresponding bis-crown compounds 3b,c
having an aliphatic linker (Table 2). The reaction of 1b
with 1,2-benzene dimethanol afforded the bis-crown
compound 3d having an aromatic linker. Next, the
double O–H insertion reaction was investigated with
bis-diazocarbonyl compounds. To this end, compounds
1e,f were refluxed with ethanol to afford diethoxy-substi-
tuted tetralactones 4a,b in good yields (Scheme 4).
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a Yields are unoptimized and refer to isolated yields.
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Scheme 4. Reaction of bis-diazocarbonyl compounds with ethanol.



S. Muthusamy, B. Gnanaprakasam / Tetrahedron Letters 48 (2007) 6821–6824 6823
Finally, we investigated the synthesis of the cryptands
based on the above successful double intermolecular
O–H insertion11 strategy. To this end, bis-diazocarbonyl
compound 1g was refluxed with Rh2(OAc)4 in DCM
containing two drops of water to afford the oxygen
linked bicyclic system 5a in low yield (Table 3). Product
Table 3. Synthesis of cryptands 5

Entry Diazo
ketone

Cryptand 5 Yield (%)
of 5a
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a Yields are unoptimized and refer to isolated yields.
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Scheme 5. Synthesis of cryptands 5 via double carbenoid insertion.
5a showed12 a characteristic singlet at 4.85 ppm for the
Ha-proton and confirms the structure of the O–H inser-
tion product. The formation of cryptand 5a was also
confirmed by the mass spectral data. The reaction of
an equimolar amount of bis-diazocarbonyl compound
1g and ethylene glycol afforded the corresponding crypt-
and 5b in 60% yield containing an oxyethylene spacer
(Scheme 5). Reaction of bis-diazo macrocyclic com-
pound 1g with 1,8-octane diol afforded cryptand 5c
having an alkoxy spacer.

The reaction of a bis-diazocarbonyl compound having
an octane spacer 1e with triethylene glycol afforded the
corresponding cryptand 5d in moderate yield. Similarly,
the reaction of bis-diazocarbonyl compound 1d with
diethylene glycol afforded the corresponding cryptand
5e in 38% yield. All of cryptands 5 (Table 3) obtained
by this method were successfully characterized by spec-
tral analysis. Reaction of bis-diazocarbonyl compound
1h under similar conditions was not successful.

In conclusion, we have demonstrated the intermolecular
O–H insertion reaction of macrocyclic diazocarbonyl
compounds. The intermolecular O–H insertion reaction
afforded several ether substituted macrocyclic dilactones.
Intermolecular double O–H insertion reaction was also
demonstrated with either bis-diazocarbonyl compounds
or dihydroxy compounds. The advantage of the double
O–H insertion methodology was demonstrated via the
synthesis of cryptands possessing oxyethylene or octane
spacers for the first time. Supramolecular studies on
the synthesized macrocycles is under progress in our
laboratory.
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